Compositional Programming

with Full Iso-recursive Types

Litao Zhou <ltzhou@cs.hku.hk>
Supervised by Bruno C. d. S. Oliveira
The University of Hong Kong

~ The Expression Problem
How to resolve the dilemma posed by the modular
extension for both data type variants and their operations
in object-oriented and functional programming

~ Compositional Programming
A statically typed modular programming language that
addresses the Expression Problem, featuring:
v' Compositional interface (enabled by intersection types)
v Nested trait composition (via the merge operator)
X Support for recursive types

> |so-recursive Types
Recursive types can be used to model objects:

type IExp = u a. {
eval : Int,
double : a }

Iso-recursive types and their unfoldings are converted via

interface IExp {
eval : Int,
double : IExp }

represented as

term level constructs:

Fe:A

IsoTyYP-FOLD

Fe:Alua.Ala]
- fold [pa.Ale : pa.A

(Iso-recursive typing)

IsoTyP-UNFOLD

Fe:pua.A
F unfold [ua.Ale : Alua.A/]

4 Expressions

type LitSig<Exp> = { eVBFth (self: Top) = { dou?IeL1t<Exp> (self: LitSig<Exp>) = {

Lit @ Int -> Exp Lit (val: Int) = Lit (val: Int) = {
! { eval = val }; double = self.Lit (val + val)

I e ol

type AddSig<Exp> = { evalAdd (self: Top) = { doubleAdd<Exp> (self: AddSig<Exp>) = {

Add : Exp -> Exp Add (1 r: Eval) = Add (1 r: Double<Exp>) = {

-> EXp { eval = 1l.eval + r.eval } double = self.Add 1l.double r.double
1 b b bs
type Eval = {eval : Int} type Double<Exp> = {double : Exp}

> Challenge: Iso-recursive Types are not Enough

/evaILit\ /doub'leLit) IExp\
4) 4)
Lit Lit
Lt eval) + double / merged \
4 N/)
N < N o Lit Add
[eva'lAdd\ /doub'leAdd) IExp\ + eval + eval
- N - N + double || + double
Add Add & PIN j
\+ eval) \+ double
" Y, \ /

> Solution: Full Iso-recursive Types

We present a novel formulation of iso-recursive typing.
Now, (un)foldings can take place anywhere within an
expression, enabled by a casting operator

e = ... |cast][c]e (Expressions)
v u= ... |cast|[foldg]o | cast[c; — c3]v (Values)
c:= unfoldg |folds |id|cit = 2| ... (Casting operators)

We develop a calculus with record types, disjoint intersection
types, BCD subtyping, iso-recursive types, and the casting
operators, which adopts a call-by-value small step semantics.

e — e’ (Reduction)

RED-CAST

e —s e’ RED-CASTELIM

cast [c]e < cast [c]e’ cast [unfold 4] (cast [fold4]v) — v

We formally prove the soundness of the type system in Coq.

: >
Operations

With standard iso-recursive types, we cannot insert fold
operators to get the desired typing, since we implement
the components of the folded expression separately.

Actual type Desired type
® {Lit : Int -> IExp_ufd o {Lit : Int -> IExp
. Add : IExp -> IExp "~ Add : IExp -> IExp
-> IExp_ufd} > -> TExp}

where TExp_ufd is the unfolding of TExp

IExp ufd = {eval:Int, double:IExp}

rA— B:c (Type casting) |Fe: A (Full iso-recursive typing)
TCAST-ARROW Typ-CAST

FAy — A;:cy F By <— By : ¢y Fe: A FA<— B:c

FA;1 = By <> Ay > By:c1 > ¢ - cast [c]e : B

TCasT-roLD For example, with the cast operator,

I-A[,ua'A/a] — ’UCIA : fOldpa_A {I—lt : 1d -> -FO-LdIExp}’
{Add ; ld -> 1d -> fOldIExp}
TCasTER can be applied to the merged expression
FA<s A:id and achieve the desired typing

» Future Work

» By extending Aj; to polymorphism, we can achieve the
full power of Compositional Programming

* QOur encoding can also be applied to modularly
compose objects with binary methods

« Full iso-recursive types provides a new (and perhaps
more direct) way to relate iso- and equi-recursive types

