
Compositional Programming
with Full Iso-recursive Types

Litao Zhou <ltzhou@cs.hku.hk>
Supervised by Bruno C. d. S. Oliveira
The University of Hong Kong

‣ The Expression Problem
How to resolve the dilemma posed by the modular
extension for both data type variants and their operations
in object-oriented and functional programming

‣ Iso-recursive Types
Recursive types can be used to model objects:
interface IExp {
eval : Int,
double : IExp }

represented as
type IExp = 𝜇 a. {
eval : Int,
double : a }

Iso-recursive types and their unfoldings are converted via
term level constructs:

Expressions

type Eval = {eval : Int}

Operations
type Double<Exp> = {double : Exp}

evalLit (self: Top) = {
Lit (val: Int) =
{ eval = val };

};

evalAdd (self: Top) = {
Add (l r: Eval) =
{ eval = l.eval + r.eval }

};

doubleLit<Exp> (self: LitSig<Exp>) = {
Lit (val: Int) = {
double = self.Lit (val + val)

};};

type LitSig<Exp> = {
Lit : Int -> Exp

}

type AddSig<Exp> = {
Add : Exp -> Exp

-> Exp
}

doubleAdd<Exp> (self: AddSig<Exp>) = {
Add (l r: Double<Exp>) = {
double = self.Add l.double r.double

};};

‣ Compositional Programming
A statically typed modular programming language that
addresses the Expression Problem, featuring:
ü Compositional interface (enabled by intersection types)
ü Nested trait composition (via the merge operator)
✗ Support for recursive types

{Lit : Int -> IExp
Add : IExp -> IExp

-> IExp}

‣ Challenge: Iso-recursive Types are not Enough
With standard iso-recursive types, we cannot insert fold
operators to get the desired typing, since we implement
the components of the folded expression separately.

{Lit : Int -> IExp_ufd
Add : IExp -> IExp

-> IExp_ufd}

:
where IExp_ufd is the unfolding of IExp
IExp_ufd = {eval:Int, double:IExp}

Actual type Desired type

↪

‣ Solution: Full Iso-recursive Types
We present a novel formulation of iso-recursive typing.
Now, (un)foldings can take place anywhere within an
expression, enabled by a casting operator

For example, with the cast operator,
{Lit : id -> foldIExp},
{Add : id -> id -> foldIExp}
can be applied to the merged expression
and achieve the desired typing

‣ Future Work

We develop a calculus with record types, disjoint intersection
types, BCD subtyping, iso-recursive types, and the casting
operators, which adopts a call-by-value small step semantics.

• By extending 𝜆!"# to polymorphism, we can achieve the
full power of Compositional Programming

• Our encoding can also be applied to modularly
compose objects with binary methods

• Full iso-recursive types provides a new (and perhaps
more direct) way to relate iso- and equi-recursive types

How?

We formally prove the soundness of the type system in Coq.

+ eval + double

+ eval

+ double

+ eval

+ double

,
=

LitLit

doubleLit @ IExpevalLit

+ eval + double, AddAdd

doubleAdd @ IExpevalAdd

merged

Lit Add

