
Foundationally Sound
Annotation Verifier
via Control Flow Splitting

Litao Zhou, Shanghai Jiao Tong University

Dec 7, 2022, Auckland, New Zealand

1

Background: How programs are verified

• Interactive Program Verifiers:
write formal specifications and proofs in a theorem prover
ü Foundationally sound
ü Rich assertion language
ü Flexible proof strategies
✗ Correctness properties are not clear from proof script

2

Background: How programs are verified

• Annotation verifiers:
by writing annotations in the source code
ü More automation
ü Compared with formal proof scripts, annotating

programs with assertions is a more straightforward
way to demonstrate a program is correct

✗ Foundational soundness proof is often lacked
• VST-A: a foundationally sound annotation verifier

3

VST-A workflow

• 1. Users annotate C programs with
function specifications and assertions
as comments

4

VST-A workflow

• 2. Annotated programs are
parsed into ClightA AST
definitions in Coq

5

Parsing

The split function

• Reduce the verification problem of the whole program into smaller straight-
line Hoare triples

6

w = NULL;
v = p;

v ==
NULL?

t = v->tail;
v->tail = w;
w = v; v = t;

return w;

{ Require }

{ Ensure }
{ Assert }

The split function

• To verify the whole program’s Hoare triple, it is enough to verify the
following (1/4) straightline Hoare triples.

7

w = NULL;
v = p;

v ==
NULL?

t = v->tail;
v->tail = w;
w = v; v = t;

return w;

{ Require }

{ Ensure }
{ Assert }

The split function

• To verify the whole program’s Hoare triple, it is enough to verify the
following (2/4) straightline Hoare triples.

8

w = NULL;
v = p;

v ==
NULL?

t = v->tail;
v->tail = w;
w = v; v = t;

return w;

{ Require }

{ Ensure }
{ Assert }

The split function

• To verify the whole program’s Hoare triple, it is enough to verify the
following (3/4) straightline Hoare triples.

9

w = NULL;
v = p;

v ==
NULL?

t = v->tail;
v->tail = w;
w = v; v = t;

return w;

{ Require }

{ Ensure }
{ Assert }

The split function

• To verify the whole program’s Hoare triple, it is enough to verify the
following (4/4) straightline Hoare triples.

• Control flow paths separated by assertions

10

w = NULL;
v = p;

v ==
NULL?

t = v->tail;
v->tail = w;
w = v; v = t;

return w;

{ Require }

{ Ensure }
{ Assert }

VST-A workflow

• 3. A set of straightline Hoare
triples are automatically computed
and printed into separate Coq files

• 4. Users are left to prove residual
proof goals that are not checked
automatically.

11

split_res1.v

Proved sound
split function

split_res2.v
split_res3.v

split_res4.v

Proof. ...

Theorem.

Soundness of split

12

{ Require } split(C)

{ Ensure }

⇒
{ Require }

C
{ Ensure }

va
lid valid

valid valid

validvalid

Soundness of split (sequential case)

13

{ Require }

{ Ensure }

split(C1) split(C2)

{ ?R }

𝑅 = 𝑤𝑝 𝑝𝑎𝑡ℎ!, 𝑄!
∧ 𝑤𝑝 𝑝𝑎𝑡ℎ", 𝑄"
∧ 𝑤𝑝 𝑝𝑎𝑡ℎ#, 𝑄#

path1

path2

path3

Q1

Q2

Q3

Features of VST-A

ü Correctness proofs are described intuitively by inserting assertions

ü Rich assertion languages and foundational soundness of VST

Ø Assertions can be inserted in a flexible way
e.g. annotating loop structures with invariants is not compulsory

Ø Incremental verification for incremental program development
i.e. changing part of the program only requires proof recompilation for the changed paths

✗ Currently only supports sequential programs and requires precise
specification for callee functions
due to the need for conjunction rule in the soundness proof 14

Summary

Ø A novel framework for program verification, based on the idea of
reducing large program proofs to simpler verification goals

Ø A formal language for annotated programs, ClightA, that not only
introduces assertions but also addresses logical variables in the verification
context

Ø A control-flow-based verification splitting algorithm, implemented in
Coq and proved sound w.r.t. the VST program logic

15

Thank you!
Litao Zhou, Shanghai Jiao Tong University, China

16[poster] [artifact] [report]

