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Abstract

We propose VST-A, a foundationally sound program veri-
fier for assertion annotated C programs. Our approach com-
bines the benefits of interactive provers as well as the read-
ability of annotated programs. VST-A analyzes control flow
graphs and reduces the program verification problem to a
set of straightline Hoare triples, which correspond to the con-
trol flow paths between assertions. Because of the rich asser-
tion language, not all reduced proof goals can be automati-
cally checked, but the system allows users to prove residual
proof goals using the full power of the Coq proof assistant.

CCS Concepts: « Theory of computation — Program ver-
ification; Hoare logic.
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1 Background

Many program verification tools have been developed and
used in different ways, with their own advantages.

Interactive verification tools (such as VST [1], Iris [7, 8])
are based on interactive theorem provers (such as Coq [4]).
One benefit of those tools is that they are foundationally
sound (i.e., have a formal proof w.r.t. the language’s oper-
ational semantics in the proof assistant). The rich language
of theorem provers also makes interactive verification tools
powerful in verifying real-world programs.
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Annotation verifiers allow programmers to add assertion
annotations directly into the code. Many verifiers work by
reducing annotated programs to SMT entailments [2, 5, 6,
9, 11]. Compared with proof scripts in a theorem prover,
writing annotations is a much more straightforward way of
demonstrating correctness of a program. Even proofs written
completely in an interactive prover are often presented in re-
search papers as annotated programs. For example, Figure 1
shows a C program and its functional correctness proof ! ‘The
annotation on line 3 describes the specification. The asser-
tion on line 5 states an invariant in the loop, which is the
main idea of the correctness proof. Despite being succinct
in describing correctness, annotation verifiers suffer from
restricted assertion and proof languages. Though stapling
those tools with external proof systems or solvers is possi-
ble [3], a common foundational soundness proof is missing.

2 Motivation

The goal of this research is to allow users to verify a pro-
gram by writing readable assertion annotations, while re-
taining the benefits of interactive tools, such as rich asser-
tion languages, flexible proof strategies, and most impor-
tantly, foundational soundness.

Existing works that build annotation verification into in-
teractive provers [10, 13] use tactic-based proof strategy de-
signs. A Hoare triple will be reduced to smaller proof goals
by automatically applying a series of proof tactics. However,
such decomposition is often not flexible enough. For exam-
ple, a fixed-location loop invariant is always required to ap-
ply the Hoare logic rule for loops. An input program like
Figure 1 is not accepted. Moreover, tactic based proof strate-
gies are vulnerable to changes. When a user makes a change
to a program, the entire proof needs to be recompiled.

Unlike previous tools, verification in VST-A is based on a
computational proved-sound reduction function, so that as-
sertions can be inserted anywhere in a program, and changes
to the program only require recompiling the changed part.

3 Approach

We build VST-A, a foundationally sound verifier, based on
VST in Coq. We illustrate VST-A’s workflow in Figure 4:

(1) Users provide a C program with assertion annotations
like Figure 1. Our front-end parser converts it into ClightA,
an AST language for assertion annotated C programs.
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{Require }

struct list {unsigned head; struct list +tail;};

struct list sreverse (struct list «p) {
/+«@ With I, Require 11 ([p],!) Ensure 1 ([ret],rev(l)) +/
struct list »w, «t, «v; w = NULL; v = p;

t = v—>tail; v->tail=w; w=v;v=1t;}
return w; }

NG W

while (v) { @ Assert 31y cx Iy I =rev(l) x I A [v] = (x,¢) * W([w], k) = U(c, ;) «

OIN}

struct list »w, «t, «v;

Figure 1. Annotated C program for verifying linked-list reversal

vl
{ (el }

w = NULL; v = p; assume v;

{ 3nexl.l=rev(l) xly A [v] > (x,¢) « U([w], L) = 1(c, ;) }

@Vl
{ n(pl.D }
w = NULL; v = p; assume !v; ret = w;
{ W([ret],rev(D)) }
@) Vihcexl,
{ I=rev(l) x I A V] > (x,0) * D([w]. k) = (L) }
t = v—>tail; v—>tail = w; w = v; v = t; assume v;
{ Ahcexlyl=rev(l) x, A [v] - (x,¢) = W([w], L) * 1(c,1) }
@Vihexl,
{ I=rev(l) x I A V] = (x,¢) « DL([w], k) = (e ) }
t = v—>tail; v—>tail = w; w = v; v = t; assume !v; ret = w;

{ 1 ([ret], rev(l)) }

{ Assert }

BT

t = v—>tail; )

v—>tail = w;

Vi
return w; [§

H

{Ensure }

Figure 2. Straightline Hoare triples for verifying linked-list reversal

Sp/lit){ Straightline Hoare triple }—) Verified
ClightA AST

Annotated C program Parsing

Figure 3. Control flow graph for reverse

(.c file) (.v Coq file)

(maximally reuse CompCert’s parser)

(proved sound in Coq)

>1J Straightline Hoare triple }—) Verified

+ —————— Verified

Figure 4. Verification workflow in VST-A

(2) Next, a split function accepts a ClightA program and its
pre-/post-conditions as input, and returns a set of straight-
line Hoare triples, which contain only basic statements and
no control flow structures. Figure 2 shows the split result
of Figure 1. The functionality of this function is natural; it
computes all the control flow paths that are separated by
assertion annotations in the source program, as illustrated
by Figure 3. We carefully design this function to deal with
logical variables in the assertions, so that rich functional cor-
rectness properties expressed by existential quantifiers can
be safely transformed.

(3) Finally, users are left to prove each straightline Hoare
triple in the split result, which can be largely automated by
existing VST forward symbolic execution tactics. With all
of the paths verified, the VST-A soundness theorem ensures
the correctness of the original program.

This is a separation logic [12] proof. lI([p]}, ) is a separation logic predi-
cate that asserts on the location referenced by p stores a linked list of 1.

The primary challenge of building VST-A is establishing
its foundational soundness. We implement the split algo-
rithm as a Coq function, and formally prove its soundness
as a Coq theorem. We find that the conjunction rule:

{PYc{Qi} A{P}c{Qz} = {P}c{Q1 A Q2}

appears necessary in this soundness proof. In the current
design of VST-A, we focus on sequential program verifica-
tion and derive this conjunction rule from the VST program
logic without ghost updates, and thus obtain the end-to-end
soundness of VST-A.

With the conjunction rule, the soundness proof of VST-A
split algorithm is purely logical. We believe that a similar
development can be applied to design other Hoare-style an-
notation verifiers for imperative languages.
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