Foundationally Sound Annotation Verifier via
Control Flow Splitting

Litao Zhou
Shanghai Jiao Tong University
Shanghai, China
ltzhou@sjtu.edu.cn

Abstract

We propose VST-A, a foundationally sound program veri-
fier for assertion annotated C programs. Our approach com-
bines the benefits of interactive provers as well as the read-
ability of annotated programs. VST-A analyzes control flow
graphs and reduces the program verification problem to a
set of straightline Hoare triples, which correspond to the con-
trol flow paths between assertions. Because of the rich asser-
tion language, not all reduced proof goals can be automati-
cally checked, but the system allows users to prove residual
proof goals using the full power of the Coq proof assistant.

CCS Concepts: « Theory of computation — Program ver-
ification; Hoare logic.

Keywords: Program Verification, Annotated Programs, Coq

ACM Reference Format:

Litao Zhou. 2022. Foundationally Sound Annotation Verifier via
Control Flow Splitting. In Companion Proceedings of the 2022 ACM
SIGPLAN International Conference on Systems, Programming, Lan-
guages, and Applications: Software for Humanity (SPLASH Compan-
ion °22), December 5-10, 2022, Auckland, New Zealand. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/3563768.3563956

1 Background

Many program verification tools have been developed and
used in different ways, with their own advantages.

Interactive verification tools (such as VST [1], Iris [7, 8])
are based on interactive theorem provers (such as Coq [4]).
One benefit of those tools is that they are foundationally
sound (i.e., have a formal proof w.r.t. the language’s oper-
ational semantics in the proof assistant). The rich language
of theorem provers also makes interactive verification tools
powerful in verifying real-world programs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for compo-
nents of this work owned by others than ACM must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

SPLASH Companion °22, December 5-10, 2022, Auckland, New Zealand

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9901-2/22/12...$15.00
https://doi.org/10.1145/3563768.3563956

Annotation verifiers allow programmers to add assertion
annotations directly into the code. Many verifiers work by
reducing annotated programs to SMT entailments [2, 5, 6,
9, 11]. Compared with proof scripts in a theorem prover,
writing annotations is a much more straightforward way of
demonstrating correctness of a program. Even proofs written
completely in an interactive prover are often presented in re-
search papers as annotated programs. For example, Figure 1
shows a C program and its functional correctness proof ! ‘The
annotation on line 3 describes the specification. The asser-
tion on line 5 states an invariant in the loop, which is the
main idea of the correctness proof. Despite being succinct
in describing correctness, annotation verifiers suffer from
restricted assertion and proof languages. Though stapling
those tools with external proof systems or solvers is possi-
ble [3], a common foundational soundness proof is missing.

2 Motivation

The goal of this research is to allow users to verify a pro-
gram by writing readable assertion annotations, while re-
taining the benefits of interactive tools, such as rich asser-
tion languages, flexible proof strategies, and most impor-
tantly, foundational soundness.

Existing works that build annotation verification into in-
teractive provers [10, 13] use tactic-based proof strategy de-
signs. A Hoare triple will be reduced to smaller proof goals
by automatically applying a series of proof tactics. However,
such decomposition is often not flexible enough. For exam-
ple, a fixed-location loop invariant is always required to ap-
ply the Hoare logic rule for loops. An input program like
Figure 1 is not accepted. Moreover, tactic based proof strate-
gies are vulnerable to changes. When a user makes a change
to a program, the entire proof needs to be recompiled.

Unlike previous tools, verification in VST-A is based on a
computational proved-sound reduction function, so that as-
sertions can be inserted anywhere in a program, and changes
to the program only require recompiling the changed part.

3 Approach

We build VST-A, a foundationally sound verifier, based on
VST in Coq. We illustrate VST-A’s workflow in Figure 4:

(1) Users provide a C program with assertion annotations
like Figure 1. Our front-end parser converts it into ClightA,
an AST language for assertion annotated C programs.

https://doi.org/10.1145/3563768.3563956
https://doi.org/10.1145/3563768.3563956

SPLASH Companion ’22, December 5-10, 2022, Auckland, New Zealand

Litao Zhou

{Require }

struct list {unsigned head; struct list +tail;};

struct list sreverse (struct list «p) {
/+«@ With I, Require 11 ([p],!) Ensure 1 ([ret],rev(l)) +/
struct list »w, «t, «v; w = NULL; v = p;

t = v—>tail; v->tail=w; w=v;v=1t;}
return w; }

NG W

while (v) { @ Assert 31y cx Iy I =rev(l) x I A [v] = (x,¢) * W([w], k) = U(c, ;) «

OIN}

struct list »w, «t, «v;

Figure 1. Annotated C program for verifying linked-list reversal

vl
{ (el }

w = NULL; v = p; assume v;

{ 3nexl.l=rev(l) xly A [v] > (x,¢) « U([w], L) = 1(c, ;) }

@Vl
{ n(pl.D }
w = NULL; v = p; assume !v; ret = w;
{ W([ret],rev(D)) }
@) Vihcexl,
{ I=rev(l) x I A V] > (x,0) * D([w]. k) = (L) }
t = v—>tail; v—>tail = w; w = v; v = t; assume v;
{ Ahcexlyl=rev(l) x, A [v] - (x,¢) = W([w], L) * 1(c,1) }
@Vihexl,
{ I=rev(l) x I A V] = (x,¢) « DL([w], k) = (e) }
t = v—>tail; v—>tail = w; w = v; v = t; assume !v; ret = w;

{ 1 ([ret], rev(l)) }

{ Assert }

BT

t = v—>tail;)

v—>tail = w;

Vi
return w; [§

H

{Ensure }

Figure 2. Straightline Hoare triples for verifying linked-list reversal

Sp/lit){ Straightline Hoare triple }—) Verified
ClightA AST

Annotated C program Parsing

Figure 3. Control flow graph for reverse

(.c file) (.v Coq file)

(maximally reuse CompCert’s parser)

(proved sound in Coq)

>1J Straightline Hoare triple }—) Verified

+ —————— Verified

Figure 4. Verification workflow in VST-A

(2) Next, a split function accepts a ClightA program and its
pre-/post-conditions as input, and returns a set of straight-
line Hoare triples, which contain only basic statements and
no control flow structures. Figure 2 shows the split result
of Figure 1. The functionality of this function is natural; it
computes all the control flow paths that are separated by
assertion annotations in the source program, as illustrated
by Figure 3. We carefully design this function to deal with
logical variables in the assertions, so that rich functional cor-
rectness properties expressed by existential quantifiers can
be safely transformed.

(3) Finally, users are left to prove each straightline Hoare
triple in the split result, which can be largely automated by
existing VST forward symbolic execution tactics. With all
of the paths verified, the VST-A soundness theorem ensures
the correctness of the original program.

This is a separation logic [12] proof. lI([p]},) is a separation logic predi-
cate that asserts on the location referenced by p stores a linked list of 1.

The primary challenge of building VST-A is establishing
its foundational soundness. We implement the split algo-
rithm as a Coq function, and formally prove its soundness
as a Coq theorem. We find that the conjunction rule:

{PYc{Qi} A{P}c{Qz} = {P}c{Q1 A Q2}

appears necessary in this soundness proof. In the current
design of VST-A, we focus on sequential program verifica-
tion and derive this conjunction rule from the VST program
logic without ghost updates, and thus obtain the end-to-end
soundness of VST-A.

With the conjunction rule, the soundness proof of VST-A
split algorithm is purely logical. We believe that a similar
development can be applied to design other Hoare-style an-
notation verifiers for imperative languages.

Acknowledgments

This research is supervised by Qinxiang Cao and supported
by NSFC under Grant No. 61902240.

Foundationally Sound Annotation Verifier via Control Flow Splitting

References
[1] Andrew W. Appel. 2011. Verified software toolchain (Invited talk). In

—
Do
—

[t

—

—

—

Lecture Notes in Computer Science, Vol. 6602 LNCS. Springer, Berlin,
Heidelberg, 1-17. https://doi.org/10.1007/978-3-642-19718-5_1
Patrick Baudin, Frangois Bobot, David Biihler, Loic Correnson, Flo-
rent Kirchner, Nikolai Kosmatov, André Maroneze, Valentin Perrelle,
Virgile Prevosto, Julien Signoles, and Nicky Williams. 2021. The
dogged pursuit of bug-free C programs: The Frama-C Software Anal-
ysis Platform. , 56-67 pages. https://doi.org/10.1145/3470569

Sylvie Boldo, Francois Clément, Jean-Christophe Filliatre, Micaela
Mayero, Guillaume Melquiond, and Pierre Weis. 2014. Trusting com-
putations: A mechanized proof from partial differential equations to
actual program. Computers and Mathematics with Applications 68, 3
(2014), 325-352. https://doi.org/10.1016/j.camwa.2014.06.004

Pierre Boutillier, Stephane Glondu, Benjamin Grégoire, Hugo Her-
belin, Pierre Letouzey, Pierre-Marie Pédrot, Yann Régis-Gianas,
Matthieu Sozeau, Arnaud Spiwack, and Enrico Tassi. 2014. Coq 8.4
Reference Manual. (jul 2014). https://hal.inria.fr/hal-01114602
WeiNgan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin.
2012. Automated verification of shape, size and bag properties via
user-defined predicates in separation logic. Science of Computer Pro-
gramming 77,9 (aug 2012), 1006-1036. https://doi.org/10.1016/j.scico.
2010.07.004

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem
Penninckx, and Frank Piessens. 2011. VeriFast: A powerful, sound,
predictable, fast verifier for C and Java. In Lecture Notes in Computer
Science, Vol. 6617 LNCS. 41-55. https://doi.org/10.1007/978-3-642-
20398-5_4

SPLASH Companion ’22, December 5-10, 2022, Auckland, New Zealand

(7]

[8

—

[9

—

[10]

(1]

[12]

[13]

R. ALF. Jung, Robbert Krebbers, Jacques Henri Jourdan, Ale§ Bizjak,
Lars Birkedal, and D. E.R.E.K. Dreyer. 2018. Iris from the ground up:
A modular foundation for higher-order concurrent separation logic.
Journal of Functional Programming 28 (2018), 73. https://doi.org/10.
1017/50956796818000151

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive
proofs in higher-order concurrent separation logic. ACM SIGPLAN
Notices 52, 1 (jan 2017), 205-217. https://doi.org/10.1145/3009837.
3009855

K. Rustan M. Leino. 2010. Dafny: An automatic program verifier for
functional correctness. In Lecture Notes in Computer Science, Vol. 6355
LNAL 348-370. https://doi.org/10.1007/978-3-642-17511-4_20

Ike Mulder, Robbert Krebbers, and Herman Geuvers. 2022. Diaframe:
Automated Verification of Fine-Grained Concurrent Programs in Iris.
(2022), 16. https://doi.org/10.1145/3519939.3523432

Peter Miiller, Malte Schwerhoff, and Alexander J. Summers. 2017.
Viper: A verification infrastructure for permission-based reasoning.
In Dependable Software Systems Engineering. Vol. 9583. Springer Ver-
lag, 104-125. https://doi.org/10.3233/978-1-61499-810-5-104

John C. Reynolds. 2002. Separation logic: A logic for shared muta-
ble data structures. In Proceedings - Symposium on Logic in Computer
Science. 55-74. https://doi.org/10.1109/lics.2002.1029817

Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan
Memarian, Derek Dreyer, and Deepak Garg. 2021. RefinedC: Au-
tomating the foundational verification of C code with refined own-
ership types. In Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI). ACM, 158-
174. https://doi.org/10.1145/3453483.3454036

https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1145/3470569
https://doi.org/10.1016/j.camwa.2014.06.004
https://hal.inria.fr/hal-01114602
https://doi.org/10.1016/j.scico.2010.07.004
https://doi.org/10.1016/j.scico.2010.07.004
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1145/3519939.3523432
https://doi.org/10.3233/978-1-61499-810-5-104
https://doi.org/10.1109/lics.2002.1029817
https://doi.org/10.1145/3453483.3454036

	Abstract
	1 Background
	2 Motivation
	3 Approach
	Acknowledgments
	References

