
Proving Functional Correctness of Tarjan’s Algorithm
and its C Implementation in Coq and VST

Litao Zhou
Shanghai Jiao Tong University

Shanghai, China
ltzhou@sjtu.edu.cn

Abstract
Tarjan’s algorithm computes the strongly connected compo-
nents of a finite graph using depth-first search.We formalize
a small step description of the algorithm in Coq and verify
an imperative implementation written in C programming
language based on the small step description in VST.

CCS Concepts: • Theory of computation → Separation
logic;Program verification; • Program verification;

Keywords: Strongly Connected Components, Separation logic,
Coq, CompCert, VST

1 Background
1.1 Strongly Connected Components
The strongly connected components on a directed graph are
defined as follows.

Definition 1.1 (Strong Connectivity). Let 𝐺 be a directed
graph. If for each pair of vertices 𝑣,𝑤 in𝐺 , 𝑣 is reachable to
𝑤 and 𝑤 is reachable to 𝑣 . (i.e. exists path 𝑝1 : 𝑣 →∗ 𝑤 and
𝑝2 : 𝑤 →∗ 𝑣). Then 𝐺 is said to be strongly connected.

Definition 1.2 (Strongly Connected Components). Let 𝐺
be a directed graph. Define an equivalence relation for two
vertices if they are mutually reachable to each other. Let the
distinct equivalence classes under this relation to beV𝑖 , 1 ≤
𝑖 ≤ 𝑛. Let 𝐺𝑖 = (V𝑖 , E𝑖), where E𝑖 = {(𝑣,𝑤) ∈ E|𝑣,𝑤 ∈ 𝑉𝑖 },
then

a) Each 𝐺𝑖 is strongly connected
b) No 𝐺𝑖 is a proper subgraph of a strongly connected

components of 𝐺

The goal of a strongly connected component algorithm
is to find a list of vertex sets {𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖) |𝐸𝑖 = {(𝑢, 𝑣) ∈
𝐸 |𝑢, 𝑣 ∈ 𝑉𝑖 }}, where

∪
𝑖 𝑉𝑖 = 𝑉 , satisfying the following two

propositions.

Proposition 1.3 (SCC Connected). Each component 𝐺𝑖 is
strongly connected.

Proposition 1.4 (SCCMaximal). No component𝐺𝑖 is a proper
subgraph of a strongly connected components of𝐺 . i.e., for any
𝑣 ∈ 𝑉 , if 𝑣 is mutually reachable to any 𝑣 ′ ∈ 𝑉𝑖 , then 𝑣 should
also be a member of 𝑉𝑖 .

In this report we are going to formally verify that the list
of sets computed by Tarjan’s algorithm[3] satisfies the two
properties above.

1.2 Tarjan’s Algorithm, a Step’s View

struct vertex {
struct edge *vedge;
int dfn, low, instack, scc;

};
struct edge {

struct vertex *etail;
struct edge *next;

};
struct vertexstk {

struct vertex * vitem;
struct vertexstk * next;

};
int idx, sccidx;
struct vertexstk *stk;
void tarjan_visit(struct vertex * x){

x −> dfn = x −> low = ++idx;
stk_push(x);
struct edge *pe = x−>vedge;
while (pe != NULL){

struct vertex *y = pe −> etail;
if (y −> dfn == 0){

tarjan_visit(y);
if (y −> low < x −> low)

x −> low = y −> low;
}
else if (y −> instack == 1 &&

y −> dfn < x −> low)
x −> low = y −> dfn;

pe = pe −> next;
}
if (x −> low == x −> dfn)

stk_pop_top_until(x);
}

Figure 1. Tarjan’s algorithm implementation

Figure 1 is the imperative Tarjan’s algorithm that we veri-
fied. Our implementation performs depth first search on the
adjacency table representation of a graph. Each vertex can
access its linked list of edges from its vedge field. For each

Technical Report, April 2021, SJTU, Shanghai L. Zhou

edge, its source node is determined by the linked list it be-
longs to, and has a field etail pointing to its destination.
Note that in an actual program for finding all the strongly
connected components, function tarjan_visit may be
called more than once on top level until all the vertices have
been visited. In this report, we will only present the spec-
ification and verification for the function tarjan_visit
itself instead of the whole program.

A global stack stk and index idx aremaintained through-
out the algorithm. idx is initialized as 0, and will be incre-
mented every time a newvertex is encountered. stk_push(x)
will push the vertex x onto the top of the stack. stk_pop
_top_until(x) will repeatedly pop the stack until x is
popped. It will also update the scc field of the popped ver-
tex to a new number 𝑖 , showing that they belong to the same
component V𝑖 .
To get a more intuitive understanding of what the algo-

rithm does, we can view Tarjan’s algorithm from a step’s
perspective. When a vertex 𝑣 is being visited (i.e. is the ar-
gument the current function call), one of the following steps
may be taken.

• If there is an unvisited edge 𝑒 from 𝑣 to an unvisited
vertex𝑢,𝑢’s Dfn and Low will be updated by an incre-
mented Idx.𝑢 will be pushed onto the Stack.𝑢 will be
passed into the tarjan_visit call and its neighbors
will be explored next. (Forward Step)

• If there is an unvisited edge 𝑒 connecting 𝑣 to a visited
vertex 𝑢, then Low(𝑣) will be updated to Dfn(𝑢), as
long as 𝑢 is still in the Stack and Dfn(𝑢) is smaller
than the old value of Low(𝑣). (Forward Visited Step)

• If all edges starting from 𝑣 have been visited, we should
check whether Low(𝑣) = Dfn(𝑣). If the result is true,
we should repeatedly pop the stack until 𝑣 is not in
the stack and the popped vertices become a strongly
connected component. Otherwise, nothing needs to
be done with the stack. For both cases, we should next
take a backward step from 𝑣 for the DFS process to
continue. (Backward Step)

Every step can be viewed as a relation on two consecu-
tive states. Starting from an initial state, we can repeatedly
use the rules above to describe the execution of Tarjan’s al-
gorithm.

2 An Overview of the Proof
One would naturally expect the formal proof of the graph
algorithm to be based on an abstract graph, and follow the
small step specification given in Section 1.2. Meanwhile, we
also want our proof to be ultimately able to verify a com-
plete imperative program, which treats graph as a concrete
data structure (e.g. adjacency table, in our example) and ma-
nipulates the graph data by performing instructions.

To achieve this goal, the general framework of our proof
is divided into two phases.

First, we define a small-step like description for the algo-
rithm. The description is a relation of states, parameterized
by a Graph object. This definition closely corresponds to
our informal description in Section 1.2 and therefore has an
intuitive implication (Section 3.2). We can use the reflexive
transitive closure of this small-step relation to describe the
fact that one state can be transformed to another after exe-
cuting a few steps in the algorithm. We can perform induc-
tion on the reflexive transitive closure relation and prove
many useful dynamic invariants of the algorithm (Section
3.3). We also need to define a static DFS tree object, in or-
der to provide some important insights into the vertex visit-
ing orders in depth-first search (Section 3.4). By composing
the dynamic invariants of the small step description and the
static property of the DFS tree, we can prove Proposition 1.3
and 1.4 hold at end-state (Section 3.5).
Next, with the model level theorems ready, to verify a im-

perative program, we prove that the small step description
is a simulation of the imperative program. The challenge
here is that separation logic requires disjoint assertions on
memory blocks. We have designed proper predicates and ef-
ficient tactics to streamline the verification process in VST
(Section 4.1 and 4.2). We will show that with small step de-
scription, we can provide straightforward specifications and
invariants for the program (Section 4.3). The functional cor-
rectness of the imperative program can then be easily estab-
lished by linking the two phases together (Section 4.4).

3 Proving Correctness of Small Step
Description

3.1 States of the Algorithm
We define the state of the algorithm as a record type with
the following fields. Without special declaration, we will re-
fer to the graph object that the algorithm operates on as 𝐺
and the initial vertex as 𝑣0. Every graph object includes a set
of Vertices and a set of Edges, together with a source/desti-
nation relation defined.

• FuncStack: list Vertex is a trace of recursive calls.
• Dfn: Vertex → Nat For every visited vertex, start-
ing from 1, Dfn indicates its depth-first search index.
Dfn(𝑣) = 0 indicates that 𝑣 has not been visited.

• Low: Vertex → Nat For every visited vertex 𝑣 , Low
indicates the smallest vertex’sDfn to which 𝑣 is reach-
able by passing at most one back edge. Low(𝑣) = 0
indicates that 𝑣 has not been visited.

• Stack: list Vertex records the vertices that have been
reached during the search but have not yet been placed
in a component.

• SccList: list (list Vertex) collects the strongly con-
nected components on the fly, initialized as an empty
list. Every group of vertices represents a component
discovered by the algorithm.

Proving Functional Correctness of Tarjan’s Algorithm and its C Implementation in Coq and VST Technical Report, April 2021, SJTU, Shanghai

• VisEdge: Edge → EdgeType There are three types
of edges, namely unvisited, tree and other. Initially
all edges are mapped to unvisited type.

• Idx: Nat counts the number of vertices that have been
reached so far. Idx is initialized as 1.

3.2 Transition Rules
We can now rewrite the informal algorithm description in
Section 1.2 into a formal small step relation in Figure 2. We
use notation𝐺 ⊢ 𝑠1 ⇒ 𝑠2 to indicate that state 𝑠1 can be one-
step transmitted to 𝑠2 through Tarjan’s algorithm on graph
object 𝐺 .

S-ForwardTree describes the transition of a forward step,
the step strictly follows our previous description in “For-
ward Step”. 𝐺 ⊩ 𝑢

𝑒
{ 𝑣 is a relation defined in Ramify-

Coq[4] indicating that 𝑢 has an edge 𝑒 to 𝑣 .
S-ForwardVisited-1 andS-ForwardVisited-2 corresponds

to the informal description of “Forward Visited Step”. Note
that when the destination vertex is not in the stack, nothing
needs to be done with the Low field.

S-PopStack-1, S-PopStack-2 and S-Backward together
capture the description of “Backward Step”. Note that we
use an extra field stage to enforce that a decision about
whether to pop the stack should be made before an actual
backward operation is performed.

To describe the execution of the whole algorithm, we can
use the reflexive transitive closure of the single step defined
above to represent whether one state is reachable to the
other. We will use 𝐺 ⊢ 𝑠1 ⇒∗ 𝑠2 to indicate that state 𝑠1
can be multi-step transformed to 𝑠2 through Tarjan’s algo-
rithm on graph object 𝐺 .
Our main focus is on the multi-step relations that begin

with the initial state of the algorithm. The initial state is de-
fined in figure 3.

Our ultimate goal in defining the small-step relation is to
prove some useful properties on the final state. It helps to
define what an endstate is.

Definition 3.1 (End State). An end-state 𝑠 of a multi-step
relation is a state where no steps can be taken any more, i.e.
∀𝑠 ′,¬𝑠 ⇒ 𝑠 ′.

For Tarjan’s algorithm, the endstate should have a more
intuitive semantic. If the multi-step relation begins with a
start_state(𝑣0), then the endstate should have the same
function stack as the initial state and all out edges of 𝑣0
should be marked as visited. For any state that does not
have the above property, it will fall into one of the premises
in Figure 2 and we can always construct a next-state for it.
Therefore the following theorem holds.

Theorem 3.2 (End State Semantics). For any state 𝑠 , if 𝐺 ⊢
start_state(𝑣0) ⇒∗ 𝑠 , and 𝑠 is an end state, then the function
stack of 𝑠 is [𝑣0] and for any 𝑒 such that 𝐺 ⊩ 𝑣0

𝑒
{ 𝑣 ′, 𝑒 has

been visited at 𝑠 .

3.3 Invariants over Transitions
We can prove many useful properties of the algorithm by
doing n-1 induction on the multi-step relation. These prop-
erties can be generally considered as invariants over tran-
sitions. To prove an invariant right, we only need to prove
that every single step can preserve the invariant. Below are
a few important invariants that contribute to the proof of
Maximal and Connected property. For ease of delivery we
will refer to current vertex as the top vertex in FunStack on
a certain state.

Note that some invariants where no Tarjan’s algorithm
specific fields (e.g. Low, Stack) are involved can be proved
for any DFS algorithm. To improve modularity and avoid re-
dundant proofs, we design an abstract algorithm description
for depth-first search, which has four kinds of small steps:

• Forward Step: push new vertex onto FuncStack, up-
date the Dfn field of the new vertex, and update the
VisEdge field of the forward edge to an unvisited ver-
tex.

• Backward Step: if all out-edges have been visited, pop
a vertex from FuncStack.

• Forward Visited Step: Update the VisEdge field of the
forward edge to a visited vertex.

• Static Step: do nothing
It is not hard to show that any invariants of depth-first

search are also invariants of the Tarjan’s algorithm, since
every small step of Tarjan’s algorithm is simply an exten-
sion of one of the above four steps in depth-first search. We
present the invariants of Tarjan’s algorithm as follows.

Lemma 3.3 (Reachable_DFS). For any state 𝑠 that can be
multi-stepped from start_state(𝑣0), if 𝑣1 and 𝑣2 are on the
function stack of 𝑠 , 𝑣1 is on top of 𝑣2, then 𝑣2 is reachable to
𝑣1 through tree edges.

Lemma 3.4 (Stack_Order). For any state 𝑠 that can be multi-
stepped from start_state(𝑣0), if 𝑣1 is on top of 𝑣2 on the func-
tion stack of 𝑠 , then 𝑣1 is also on top of 𝑣2 on the SCC stack of
𝑠 .

Theproof of the above two lemmas can be obtained through
n-1 induction on the multi-step relation. They will lead to
the following lemma about the reachable relation on the
stack.

Lemma 3.5 (Stack_Reachable). For any state 𝑠 that can be
multi-stepped from start_state(𝑣0), if 𝑣1 and 𝑣2 are on the
SCC Stack of 𝑠 , 𝑣1 is on top of 𝑣2, and 𝑣2 is in the function
stack of 𝑠 , then 𝑣2 is reachable to 𝑣1 through tree edges.

Proof. by n-1 induction on the multi-step relation. Clearly,
since the initial state only has 𝑣0 in the stack, the lemma
holds.

For the induction case, we have start_state(𝑣0) ⇒∗ 𝑠 ⇒
𝑠 ′. Induction hypothesis says that on state 𝑠 , any pair of ver-
tices on the stack will have an offspring relation if the lower

Technical Report, April 2021, SJTU, Shanghai L. Zhou

𝑝𝑔 ⊩ 𝑢
𝑒
{ 𝑣,𝑉 𝑖𝑠𝐸𝑑𝑔𝑒 (𝑒) = 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑, 𝐷 𝑓 𝑛(𝑢) = 0

graph(𝑝𝑔) ⊢

𝑢 :: 𝐹𝑢𝑛𝑐𝑆𝑡𝑎𝑐𝑘, 𝐷 𝑓 𝑛,
𝐿𝑜𝑤, 𝑆𝑐𝑐𝐿𝑖𝑠𝑡, 𝑆𝑡𝑎𝑐𝑘,
𝑉 𝑖𝑠𝐸𝑑𝑔𝑒, 𝐼𝑑𝑥, 𝑠𝑡𝑎𝑔𝑒1

 ⇒

𝑣 :: 𝑢 :: 𝐹𝑢𝑛𝑐𝑆𝑡𝑎𝑐𝑘, (𝑣 ↦→ 𝐼𝑑𝑥 + 1;𝐷𝑓 𝑛),
(𝑣 ↦→ 𝐼𝑑𝑥 + 1;𝐿𝑜𝑤), 𝑆𝑐𝑐𝐿𝑖𝑠𝑡, 𝑣 :: 𝑆𝑡𝑎𝑐𝑘,
(𝑒 ↦→ 𝑡𝑟𝑒𝑒;𝑉𝑖𝑠𝐸𝑑𝑔𝑒), 𝐼𝑑𝑥 + 1, 𝑠𝑡𝑎𝑔𝑒1


S-ForwardTree

𝑝𝑔 ⊩ 𝑢
𝑒
{ 𝑣,𝑉 𝑖𝑠𝐸𝑑𝑔𝑒 (𝑒) = 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑, 𝐷 𝑓 𝑛(𝑢) ≠ 0, 𝑣 ∈ 𝑆𝑡𝑎𝑐𝑘

graph(𝑝𝑔) ⊢

𝑢 :: 𝐹𝑢𝑛𝑐𝑆𝑡𝑎𝑐𝑘, 𝐷 𝑓 𝑛,
𝐿𝑜𝑤, 𝑆𝑐𝑐𝐿𝑖𝑠𝑡, 𝑆𝑡𝑎𝑐𝑘,
𝑉 𝑖𝑠𝐸𝑑𝑔𝑒, 𝐼𝑑𝑥, 𝑠𝑡𝑎𝑔𝑒1

 ⇒

𝑢 :: 𝐹𝑢𝑛𝑐𝑆𝑡𝑎𝑐𝑘, 𝐷 𝑓 𝑛,
(𝑢 ↦→ min(𝐷𝑓 𝑛(𝑣), 𝐿𝑜𝑤 (𝑢));𝐿𝑜𝑤),
𝑆𝑐𝑐𝐿𝑖𝑠𝑡, 𝑆𝑡𝑎𝑐𝑘, (𝑒 ↦→ 𝑜𝑡ℎ𝑒𝑟 ;𝑉𝑖𝑠𝐸𝑑𝑔𝑒),
𝐼𝑑𝑥, 𝑠𝑡𝑎𝑔𝑒1


S-ForwardVisited-1

𝑝𝑔 ⊩ 𝑢
𝑒
{ 𝑣,𝑉 𝑖𝑠𝐸𝑑𝑔𝑒 (𝑒) = 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑, 𝐷 𝑓 𝑛(𝑢) ≠ 0, 𝑣 ∉ 𝑆𝑡𝑎𝑐𝑘

graph(𝑝𝑔) ⊢

𝑢 :: 𝐹𝑢𝑛𝑐𝑆𝑡𝑎𝑐𝑘, 𝐷 𝑓 𝑛,
𝐿𝑜𝑤, 𝑆𝑐𝑐𝐿𝑖𝑠𝑡, 𝑆𝑡𝑎𝑐𝑘,
𝑉 𝑖𝑠𝐸𝑑𝑔𝑒, 𝐼𝑑𝑥, 𝑠𝑡𝑎𝑔𝑒1

 ⇒

𝑢 :: 𝐹𝑢𝑛𝑐𝑆𝑡𝑎𝑐𝑘, 𝐷 𝑓 𝑛, 𝐿𝑜𝑤,
𝑆𝑐𝑐𝐿𝑖𝑠𝑡, 𝑆𝑡𝑎𝑐𝑘, (𝑒 ↦→ 𝑜𝑡ℎ𝑒𝑟 ;𝑉𝑖𝑠𝐸𝑑𝑔𝑒),
𝐼𝑑𝑥, 𝑠𝑡𝑎𝑔𝑒1


S-ForwardVisited-2

𝐷𝑓 𝑛(𝑢) ≠ 𝐿𝑜𝑤 (𝑢) ∧ ∀𝑒 𝑤, 𝑝𝑔 ⊩ 𝑣
𝑒
{ 𝑤 ⇒ 𝑉𝑖𝑠𝐸𝑑𝑔𝑒 (𝑒) ≠ 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑

graph(𝑝𝑔) ⊢

𝑢 :: 𝐹𝑢𝑛𝑐𝑆𝑡𝑎𝑐𝑘, 𝐷 𝑓 𝑛,
𝐿𝑜𝑤, 𝑆𝑐𝑐𝐿𝑖𝑠𝑡, 𝑆𝑡𝑎𝑐𝑘,
𝑉 𝑖𝑠𝐸𝑑𝑔𝑒, 𝐼𝑑𝑥, 𝑠𝑡𝑎𝑔𝑒1

 ⇒

𝑢 :: 𝐹𝑢𝑛𝑐𝑆𝑡𝑎𝑐𝑘, 𝐷 𝑓 𝑛,
𝐿𝑜𝑤, 𝑆𝑐𝑐𝐿𝑖𝑠𝑡, 𝑆𝑡𝑎𝑐𝑘,
𝑉 𝑖𝑠𝐸𝑑𝑔𝑒, 𝐼𝑑𝑥, 𝑠𝑡𝑎𝑔𝑒2


S-PopStack-1

𝐷𝑓 𝑛(𝑢) = 𝐿𝑜𝑤 (𝑢) ∧ ∀𝑒 𝑤, 𝑝𝑔 ⊩ 𝑣
𝑒
{ 𝑤 ⇒ 𝑉𝑖𝑠𝐸𝑑𝑔𝑒 (𝑒) ≠ 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑

graph(𝑝𝑔) ⊢

𝑢 :: 𝐹𝑢𝑛𝑐𝑆𝑡𝑎𝑐𝑘, 𝐷 𝑓 𝑛, 𝐿𝑜𝑤,
𝑆𝑐𝑐𝐿𝑖𝑠𝑡, 𝑝𝑜𝑝@[𝑢]@𝑟𝑒𝑚,
𝑉𝑖𝑠𝐸𝑑𝑔𝑒, 𝐼𝑑𝑥, 𝑠𝑡𝑎𝑔𝑒1

 ⇒

𝑢 :: 𝐹𝑢𝑛𝑐𝑆𝑡𝑎𝑐𝑘, 𝐷 𝑓 𝑛, 𝐿𝑜𝑤,
(𝑝𝑜𝑝@[𝑢]) :: 𝑆𝑐𝑐𝐿𝑖𝑠𝑡, 𝑟𝑒𝑚,
𝑉𝑖𝑠𝐸𝑑𝑔𝑒, 𝐼𝑑𝑥, 𝑠𝑡𝑎𝑔𝑒2


S-PopStack-2

graph(𝑝𝑔) ⊢

𝑣 :: 𝑢 :: 𝐹𝑢𝑛𝑐𝑆𝑡𝑎𝑐𝑘, 𝐷 𝑓 𝑛,
𝐿𝑜𝑤, 𝑆𝑐𝑐𝐿𝑖𝑠𝑡, 𝑆𝑡𝑎𝑐𝑘,
𝑉 𝑖𝑠𝐸𝑑𝑔𝑒, 𝐼𝑑𝑥, 𝑠𝑡𝑎𝑔𝑒2

 ⇒

𝑢 :: 𝐹𝑢𝑛𝑐𝑆𝑡𝑎𝑐𝑘, 𝐷 𝑓 𝑛,
(𝑢 ↦→ min(𝐿𝑜𝑤 (𝑣), 𝐿𝑜𝑤 (𝑢));𝐿𝑜𝑤),
𝑆𝑐𝑐𝐿𝑖𝑠𝑡, 𝑆𝑡𝑎𝑐𝑘,𝑉 𝑖𝑠𝐸𝑑𝑔𝑒, 𝐼𝑑𝑥, 𝑠𝑡𝑎𝑔𝑒1


S-Backward

Figure 2. Small Step Description for Tarjan’s Algorithm

start_state(𝑣0) =


FuncStack : [𝑣0], Dfn : 𝜆𝑣.if 𝑣 = 𝑣0 then 1 else 0, Stack : [𝑣0] ,
SccList : [] , Low : 𝜆𝑣 .if 𝑣 = 𝑣0 then 1 else 0, Idx : 1,
Stage : stage1 VisEdge : 𝜆𝑒.unvisited


Figure 3. Initial state of multi-step relation

vertex is also in the function stack. We need to prove that
state 𝑠 ′ also has this property.

Note that the only single steps that may change the stack
or the tree edge map are S-ForwardTree and S-PopStack.
For the rest of the cases, the preservation can be proved di-
rectly.

For S-ForwardTree step, by Lemma 3.3, the pushed ver-
tex is an offspring of all the vertices in the function stack.
For S-PopStack, by Lemma 3.4, all the 𝑣2’s in the function
stack except the current vertex still remain on the SCC stack.

Since the SCC stack at 𝑠 ′ is a part of the SCC stack of 𝑠 , ap-
plying the induction hypothesis will finish the proof. □

For proving Connected, it suffices to show that every
pair of vertices in a component aremutually reachable through
the root. Thus we only need to prove: for each popped com-
ponent, every vertex in this component and its root (i.e. the
vertex that triggers the popping action) are mutually reach-
able.

Proving Functional Correctness of Tarjan’s Algorithm and its C Implementation in Coq and VST Technical Report, April 2021, SJTU, Shanghai

From Lemma 3.5, we can prove one direction of the Con-
nected property. By instantiating 𝑣2 as the current vertex,
all the popped 𝑣1’s are before 𝑣2 in the stack, thus reachable
from the current vertex.
Theorem 3.6 (Connect_Direction_1). For any state 𝑠 that
can be multi-stepped from start_state(𝑣0), if 𝑠 ⇒ 𝑠 ′ is a
𝑆 −𝑃𝑜𝑝𝑆𝑡𝑎𝑐𝑘 −2 step, 𝑣 is the current vertex of 𝑠 , then for any
𝑣 ′ in the popped component, 𝑣 is reachable to 𝑣 ′

Wecontinue proving the other direction.This part of proof
is a little trickier, but we can still use n-1 induction on multi-
steps to construct invariants and guide the proof.
Lemma3.7 (Low_Property). For any state 𝑠 that can bemulti-
stepped from start_state(𝑣0), for any 𝑣 in the SCC stack of
𝑠 , either 𝑣 .dfn = 𝑣 .low or there exists a 𝑣 ′ whose dfn is equal
to 𝑣 .low, 𝑣 ′ can reach 𝑣 through several tree edges, and 𝑣 can
reach 𝑣 ′ through several tree edges and one back edge.

Lemma 3.8 (Stack_Dfn_Property). For any state 𝑠 that can
be multi-stepped from start_state(𝑣0), if 𝑣1 and 𝑣2 are ver-
tices in the SCC stack, then 𝑣1 is on top of 𝑣2 on the SCC stack
of 𝑠 if and only if 𝑣1 .dfn < 𝑣2 .dfn.
Lemma 3.9 (Low_Dfn_Relation). For any state 𝑠 that can
be multi-stepped from start_state(𝑣0), for any 𝑣 , we have
𝑣 .low ≤ 𝑣 .dfn on state 𝑠 .

Lemma3.10 (Stack_FunStack_Relation). For any state 𝑠 that
can be multi-stepped from start_state(𝑣0), for any 𝑣 , if 𝑣 is
in the SCC stack of 𝑠 , and 𝑣 .dfn = 𝑣 .low on 𝑠 , then 𝑣 is also in
the function stack of 𝑠 .

Still, the above four lemmas can be proved following n-1
induction on the multi-step relation.They will contribute to
the following lemma.
Lemma3.11 (Stack_reachable_Cur). On any state 𝑠 that can
bemulti-stepped from start_state(𝑣0), for any vertex 𝑣 on the
stack, 𝑣 is reachable to the current vertex 𝑥 of state 𝑠 .

Proof. We first assert that for any vertex 𝑣 ′ in the stack, ei-
ther we can prove it is reachable to 𝑥 , or there exists a path
to 𝑢, where 𝑢.dfn < 𝑣 ′.dfn, and 𝑢 is still in the stack.
From Lemma 3.10, if 𝑣 ′.low = 𝑣 ′.dfn, then 𝑣 ′ is on the

function stack. Lemma 3.3 implies 𝑣 ′ is reachable to 𝑥 . If
𝑣 ′.low < 𝑣 ′.dfn, then Lemma 3.7 provides such a 𝑢 as we
need in the stack. Lemma 3.9 implies that 𝑣 ′.low > 𝑣 ′.dfn is
impossible. Therefore the assertion holds.

Note that Lemma 3.8 shows thatDfn decreases monotoni-
cally on SCC stack, by induction on the length of SCC stack
we can show that 𝑣 can eventually reach 𝑥 by repeatedly
applying the assertion above. □

Since the popped component is always a sub-list of the
stack, and the current vertex 𝑥 is always in the popped com-
ponent when a S-PopStack-2 step is taken, the other di-
rection of the Connected property follows directly from
Lemma 3.11.

Theorem 3.12 (Connect_Direction_2). For any state 𝑠 that
can be multi-stepped from start_state(𝑣0), if 𝑠 ⇒ 𝑠 ′ is a
𝑆 −𝑃𝑜𝑝𝑆𝑡𝑎𝑐𝑘 −2 step, 𝑣 is the current vertex of 𝑠 , then for any
𝑣 ′ in the popped component, 𝑣 ′ is reachable to 𝑣

Still, by performing n-1 induction on the multi-step, since
the SccList grows monotonically, we can prove that at end
state, all components in the SccList have the Connected
property, formally stated as follows.
Theorem3.13 (Tarjan_Connected). If 𝑠 can bemulti-stepped
from start_state(𝑣0), and 𝑠 is an end state (i.e. no more steps
can be taken from 𝑠), then for any component 𝑐 in SccList of
𝑠 , any pair of 𝑣1, 𝑣2 ∈ 𝑐 are mutually reachable.

The above proof demonstrates the superiority of small
step description in constructing readable and intuitive proofs.
Every lemma can correspond to an invariant, either speci-
fying the semantics of a field or revealing the relations be-
tween several fields throughout the algorithm. All the proofs
are carried out in the n-1 induction fashion.

3.4 Property of DFS Tree
The proof of invariants has provided a lot of properties for
the final state. However, to prove the Maximal property,
we need some further lemmas that can dig deeper into the
nature of DFS. It is the visting order of DFS that ensures the
Maximal property of the DFS tree. We define a DFS tree as
follows.
Definition 3.14 (DFS Tree). The DFS Tree 𝑇 of a directed
graph 𝐺 is defined as a sub-graph of 𝐺 with the following
properties.

1. 𝑇 is a tree, i.e.
a. Has exactly one root node that has no in edges,
b. Every node except the root in 𝑇 has only one in

edge,
c. Every node is reachable from the root by tree edges,

2. There exists a total order 𝑂𝑟𝑑 on the vertex set of 𝑇 ,
3. If 𝑣1, 𝑣2 ∈ 𝑂𝑟𝑑 , any vertices in the sub-tree of 𝑣1 will

not have a direct edge on 𝐺 to the sub-tree of 𝑣2.
Here we choose to define the DFS tree as a subgraph of

the original graph, instead of as a recursive tree structure.
In this way, the connectivity on the DFS tree can have a di-
rect correspondence to the connectivity of tree edges on the
original graph. To be specific,𝑇 ({V, E}, 𝑠) can be defined as
{(V, E ′) |E ′ = {𝑒 ∈ E|𝑠 .VisEdge(𝑒) = tree}}. We can prove
that the multi-step relation can always generate a valid DFS
tree.

The𝑂𝑟𝑑 in the definition can be simply understood as the
“less than” relation on Dfn in the small step description. We
generalize this concept in the DFS tree so that the property
of DFS tree can apply to other small step descriptions that
may not necessarily use a natural number to represent the
visiting order. We can formally define the relation between
two vertices with respect to their visiting orders.

Technical Report, April 2021, SJTU, Shanghai L. Zhou

Definition 3.15 (Relation betweenVertices). On aDFSTree
𝑇 , two vertices 𝑣1 and 𝑣2 can have the following relations

1. 𝑣1 is the ancestor of 𝑣2 if 𝑣1 is reachable to 𝑣2 on 𝑇 .
Conversely, 𝑣2 is the offspring of 𝑣1

2. Two vertices are brothers if there exists a common
ancestor of them. In particular 𝑣1 is the left brother
of 𝑣2 if (𝑣1, 𝑣2) ∈ 𝑂𝑟𝑑 . Conversely 𝑣1 is on the right
brother of 𝑣2 if (𝑣2, 𝑣1) ∈ 𝑂𝑟𝑑 .

It is not hard to prove the following lemmas based on the
basic properties of the DFS tree.

Proposition 3.16 (DFS Tree Property). On a DFS Tree 𝑇 ,
1. No loop exists on DFS Tree.
2. Any two vertices on the DFS Tree have a (nearest) com-

mon ancestor.
3. The “offspring” relation of two vertices are transitive
4. The “left” relation of two vertices are transitive
5. If two vertices are not in the offspring or ancestor rela-

tion, then they must be brothers

The last property in Definition 3.15 captures the depth-
first essence of the algorithm. A vertex will not be marked
as “finished”, i.e. in our algorithm, popped out of the func-
tion stack, until all its reachable vertices have been explored.
We can further develop a useful lemma based on the DFS
property.

Lemma 3.17 (Reachable on Subtree). If 𝑣1 is left of 𝑣2, 𝑣1
and 𝑣2 mutually reachable, then there exists a common ances-
tor 𝑣𝑝 of 𝑣1 and 𝑣2, such that 𝑣1 is reachable to 𝑣𝑝 .

Proof. by induction on the path from 𝑣1 to 𝑣2. The base case
clearly holds since 𝑣1 = 𝑣2 when the path is empty. For the
induction case, assume 𝑣1 is reachable to 𝑣3 and 𝑣3 has an
edge to 𝑣2. DFS Tree property implies that we can find a
common ancestor 𝑣 ′𝑝 for 𝑣1 and 𝑣3.The induction hypothesis
indicates that 𝑣1 is reachable to 𝑣 ′𝑝 if 𝑣1 is a left brother of 𝑣3.
We perform case analysis based on the relation of 𝑣2 and 𝑣3.

1. 𝑣3 is the offspring of 𝑣2. If 𝑣3 is already the common
ancestor of 𝑣1 and 𝑣2, then 𝑣3 is the 𝑣𝑝 we should find.
Otherwise, 𝑣1 is a left brother of 𝑣3, the 𝑣𝑝 can be ob-
tained from the induction hypothesis.

2. 𝑣2 is the offspring of 𝑣3. Since 𝑣1 is a left brother of
𝑣2, 𝑣1 is also a left brother of 𝑣3. The 𝑣𝑝 can also be
obtained from the induction hypothesis.

3. 𝑣2 is the left brother of 𝑣3. By the transitivity of the
“left brother” relation, 𝑣1 is also a left brother of 𝑣3.The
𝑣𝑝 can also be obtained from the induction hypothesis.

4. 𝑣2 is the right brother of 𝑣3, but 𝑣2 has an edge to 𝑣3,
contradicting to the property of DFS Tree.

□

Since the nearest common ancestor belongs to the set of
common ancestors, we can refine Lemma 3.17 into the fol-
lowing form.

Theorem 3.18 (Reachable to NCA). If 𝑣1 and 𝑣2 are broth-
ers and mutually reachable on 𝐺 , then their nearest common
ancestor 𝑣𝑝 can be reached from 𝑣1 on 𝐺 .

3.5 Putting it All Together
To make use of Theorem 3.18 and prove the Maximal prop-
erty of the end state, we need to prove the following lemmas.

Lemma 3.19 (Tree_Reachable_Stack). For any state 𝑠 that
can be multi-stepped from start_state(𝑣0), if 𝑣1 and 𝑣2 are
on the SCC Stack of 𝑠 , 𝑣1 is reachable to 𝑣2 through tree edges,
i.e. 𝑣1 is the offspring of 𝑣2, and 𝑣2 is in the SCC stack of 𝑠 ,
then 𝑣1 is also in the SCC stack.

Lemma 3.20 (One Hop Reachable in Stack). At any state 𝑠
that can be multi-stepped from start_state(𝑣0), for any two
vertices 𝑣1, 𝑣2, if 𝑣2 can reach 𝑣1 through a path that only has
one back edge at the end, then if 𝑣1 is in the SCC stack, 𝑣2 must
also be in the SCC stack.

Lemma 3.21 (NCA exists). At any state 𝑠 that can be multi-
stepped from start_state(𝑣0), for any 𝑐 ∈ 𝑠 .SccList, there
exists a common ancestor 𝑣 ∈ 𝑐 , such that 𝑣 is the offspring of
any vertex in 𝑐 .

The above three lemmas are not hard to prove by n-1 in-
duction on the multi-step relation. We will see how they
contribute to the following important lemmas leading to the
Maximal property.

Lemma 3.22 (Reachable in Stack). At any state 𝑠 that can
be multi-stepped from start_state(𝑣0), for any two vertices
𝑣1 𝑣2, if 𝑣2 is reachable to 𝑣1 through visited edges, then if 𝑣1
is in the SCC stack, 𝑣2 must also be in the SCC stack.

Proof. Since any reachable path can be split into several seg-
ments that has exactly one back edge on the tail and one (po-
tentially empty) path that is completely composed of tree
edges, the proof can be completed by induction on the path
from 𝑣2 to 𝑣1.
The induction case can be handled by Lemma 3.20. For

the base case, where only tree edges are left, we can show
that all ancestors of 𝑣2 are in the stack by applying Lemma
3.19. □

Lemma 3.23 (Reachable Same Scc). At any state 𝑠 that can
bemulti-stepped from start_state(𝑣0), for any two vertices 𝑣1
𝑣2, if 𝑣2 is the offspring of 𝑣1, and 𝑣2 is reachable to 𝑣1 through
visited edges, if 𝑣1 is in the SCC stack or a strongly connected
component, then 𝑣2 must be simultaneously in the stack or in
the same component.

Proof. by n-1 induction on the multi-step relation. Clearly,
on the initial state the lemma holds.
For the induction case, we have start_state(𝑣0) ⇒∗ 𝑠 ⇒

𝑠 ′. There are three kinds of single steps that may change
the stack. For the rest of the cases, the preservation can be
proved directly.

Proving Functional Correctness of Tarjan’s Algorithm and its C Implementation in Coq and VST Technical Report, April 2021, SJTU, Shanghai

• For S-ForwardTree step, a new tree edge is visited
and a new vertex is pushed into the stack. Note that
new edge won’t affect the rechability in the popped
components.We only have to consider the case where
𝑣1 is in the SCC stack. We can apply Lemma 3.22 on
𝑣2’s reachability to 𝑣1 to prove 𝑣2 is also in the SCC
stack.

• For S-ForwardVisited step, a new back edge is visited.
Similarly, we only have to consider the case where 𝑣1
is in the SCC stack. We can also apply Lemma 3.22 on
𝑣2’s reachability to 𝑣1 to prove 𝑣2 is also in the SCC
stack.

• For S-PopStack step, we can also use Lemma 3.22 to
show that all 𝑣1’s offsprings that are reachable to 𝑣2
are still on the stack after popping.

□

Theorem 3.24 (Tarjan_Maximal). If 𝑠 can be multi-stepped
from start_state(𝑣0), and 𝑠 is an end state (i.e. no more steps
can be taken from 𝑠), then for any component 𝑐 in SccList of
𝑠 , if a vertex 𝑣 ′ is mutually reachable to any vertex in 𝑐 , then
𝑣 ′ ∈ 𝑐 .

Proof. From Lemma 3.21 we know that a “root” 𝑣𝑝 exists for
the component 𝑐 . From condition we know 𝑣𝑝 and 𝑣 ′ are mu-
tually reachable. Proposition 3.16 implies that we can per-
form case analysis on the visiting order of 𝑣𝑝 and 𝑣 ′.

• If 𝑣 ′ is an offspring or ancestor of 𝑣𝑝 , we can get 𝑣 ′ ∈ 𝑐
by applying Lemma 3.23 directly.

• If 𝑣 ′ is left of 𝑣𝑝 , then we may find the nearest com-
mon ancestor 𝑣𝑟 of 𝑣 ′ and 𝑣𝑝 . From Theorem 3.18, we
know that 𝑣 ′ should be reachable to 𝑣𝑟 . We argue that
𝑣𝑟 must be equal to 𝑣𝑝 . Otherwise, we can find a fa-
ther node 𝑦, who has a tree edge pointing to 𝑣𝑝 . Note
that 𝑣𝑝 is reachable to 𝑦 through 𝑣𝑝 { 𝑣 ′ { 𝑣𝑟 { 𝑦.
By Lemma 3.23, 𝑦 should also be in the component,
contradicting to the fact that 𝑣𝑝 is the ancestor of all
vertices in the component.

• If 𝑣 ′ is right of 𝑣𝑝 , and the nearest common ancestor
is 𝑣𝑟 . Similarly, from Theorem 3.18, we know that 𝑣𝑝
should be reachable to 𝑣𝑟 . We argue that 𝑣𝑟 must be
equal to 𝑣𝑝 . Otherwise, we can find a father node 𝑦,
who has a tree edge pointing to 𝑣𝑝 . Now, that 𝑣𝑝 is
reachable to 𝑦 through 𝑣𝑝 { 𝑣𝑟 { 𝑦. By Lemma 3.23,
𝑦 should also be in the component, contradiction is
yielded.

All cases have indicated that 𝑣 ′ ∈ 𝐶 , which finishes the
proof of Maximal property.

□

4 Proving the Simulation Relation on C
Program

To prove the functional correctness of an imperative imple-
mentation of Tarjan’s algorithm, we must define a predicate

of graph representation on the memory model of the imper-
ative language and relate it to the graph and field operation
in the small step description. We present our verification
on Verifiable C, the program logic of the Verified Software
Toolchain (VST). We will begin with the basic definitions
of predicates that describe the memory representation of
graphs and then demonstrate how small step description fits
into the program verification process.

4.1 Representation predicates for graphs, a simple
version

The Tarjan’s Algorithm is designed to be of𝑂 (|𝑉 | + |𝐸 |) run-
ning time. Therefore, we choose the adjacency table instead
of adjacency matrix as the graph representation implemen-
tation in our imperative program to be verified.

In our proofs, we directly treat addresses of struct ver‐
tex and struct edge as vertices and edges in the graph.

Our definition of graph predicates basically follows the
memory layout of an adjacency table, shown in Figure 4.
Starting from the bottom, we use field_storage𝜋𝑉 (𝑣, 𝑠) to in-
dicate that the fields of vertex 𝑣 are stored on address 𝑣 , and
values of all fields should be captured by state 𝑠 . We also
add a subscription to specify the read/write permission of
the representation predicate. We will discuss about its de-
tails later.

We use edge_storage𝜋𝐺 (𝐺, 𝑣, 𝑒𝑠) to indicate that a list of
values 𝑒𝑠 stores the out-edges of 𝑣 in the graph𝐺 = {V, E}.
We use a pure proposition elis_prop to capture all out-edges
of 𝑣 . A global order <𝐸 on edges is introduced to ensure a
deterministic 𝑒𝑠 .

field_storage and edge_storage together provide the full
description for the representation of a single row on the ad-
jacency table (i.e. a vertex and the linked list of its out-edges).
We combine them and use vertex_storage to represent mul-
tiple rows in the adjacency table.
Note that vertex_storage does not enforce the order of

vertices in 𝑣𝑠 to follow a certain order.This is because all the
information about vertices are already represented by the
graph object 𝐺 . In fact, the order of vertices will not make
a difference in our implementation, since we do not rely on
this order to search the graph. The exploration of new ver-
tices are based on the etail field of the edge struct.
We use proposition vlis_prop to enforce 𝑣𝑠 to capture all

the vertices in graph 𝐺 = {V, E}.
Above, we combine vlis_prop and vertex_storage and de-

fine the representation predicate of a graph graph_rep.
Other parts of the program memory, e.g. the SCC stack,

and global variables such as Idx, will be represented by a
predicate global_rep(𝑠), where 𝑠 is the abstract state.

Technical Report, April 2021, SJTU, Shanghai L. Zhou

field_storage𝜋𝑉 (𝑣, 𝑠) ≜ 𝑣 .dfn ↦→𝜋𝑉 𝑠 .Dfn(𝑣) ∗ 𝑣 .low ↦→𝜋𝑉 𝑠 .Low(𝑣)∗
𝑣 .instack ↦→𝜋𝑉 if 𝑣 ∈ 𝑠 .Stack then 1 else 0∗
𝑣 .scc ↦→𝜋𝑉 (𝑖 : 𝑣 ∈ 𝑠 .SccList[𝑖])

edge_storage𝜋𝐺 (𝐺, 𝑝𝑒, 𝑒 :: 𝑒𝑠) ≜ ∃𝑝𝑒 ′, 𝑒 .𝑑𝑠𝑡 ∈ V ∧ 𝑝𝑒.etail ↦→𝜋𝐺 𝑒.𝑑𝑠𝑡
𝑝𝑒.next ↦→𝜋𝐺 𝑝𝑒 ′ ∗ edge_storage𝜋𝐺 (𝐺, 𝑝𝑒

′, 𝑒𝑠)
edge_storage𝜋𝐺 (𝐺, 𝑝𝑒, []) ≜ emp

elis_prop (G, v, es) ≜ NoDup 𝑒𝑠 ∧ ∀[𝑒1, . . . , 𝑒2] ⊆ 𝑒𝑠, 𝑒1 <𝐸 𝑒2 ∧ ∀𝑒, (𝑒 ∈ es ⇔ 𝑒.𝑠𝑟𝑐 = 𝑣)

vertex_storage(𝐺, 𝑣𝑠, 𝑠)𝜋𝐺 ,𝜋𝑉 ≜ ∗
𝑣∈𝑣𝑠

(
∃𝑒𝑠, elis_prop(𝐺, 𝑣, 𝑒𝑠) ∧ edge_storage𝜋𝐺 (𝐺, 𝑣, 𝑒𝑠)∗
𝑣 .vedge ↦→𝜋𝐺 hd(𝑒𝑠) ∗ field_storage𝜋𝑉 (𝑣, 𝑠)

)
vlis_prop(𝐺, 𝑣𝑠) ≜ NoDup 𝑣𝑠 ∧ ∀𝑣, (𝑣 ∈ vs ⇔ 𝑣 ∈ V)

graph_rep𝜋𝐺 ,𝜋𝑉
(𝐺, 𝑠) ≜ ∃ 𝑣𝑠, vlis_prop (G, vs) ∧ vertex_storage𝜋𝐺 ,𝜋𝑉

(𝐺, 𝑣𝑠, 𝑠)

global_rep(𝑠) ≜ ∃StkPtr, stk ↦→ StkPtr ∗ LL(𝑠 .Stack, StkPtr) ∗
idx ↦→ 𝑠 .Idx ∗ sccidx ↦→ length(𝑠 .SccList)

Figure 4. Predicate Definition of Graphs

4.2 Representation predicates with fractional
permission

For now, we can already use graph_rep to describe all mem-
ory that our program uses for graph representation. In a sep-
aration logic proof, we can unfold this predicate and pick
one vertex from the big separating conjunction when rea-
soning about memory load/store on that vertex. However,
at certain program points, it may require extra proof efforts.

Consider, for example, in the loop body, a vertex 𝑦 con-
nected to 𝑥 is being accessed. The reasoning of loop body
will involve the memory of both vertices simultaneously. As
a result in separation logic, we need to perform case analy-
sis on whether 𝑥 and𝑦 points to the same vertex struct.
We consider such proof as verbose and counter-intuitive,
since algorithm correctness proof already covers the case
where a vertex has an edge pointing to itself.

To address this problem, we can base our verification on
permission accounting[2] to bypass the tediouswork of fold-
ing/unfolding graph_rep. Originally, permission was intro-
duced for concurrent program verification when reasoning
about concurrent-read/exclusive-write resources. Our prac-
tice has shown that permission accounting also has a place
in the verification of complicated single-threaded programs
like Tarjan’s algorithm. In our example, we actually don’t
have to care whether an out-edge from 𝑣1 points to itself or
not, sincewe can logically assume that two virtual operators
aremanipulating the same graph concurrently.Their respec-
tive operations do not affect each other. It makes sense to
adopt the idea of permission accounting in our verification.

This is why every representation predicate comes with
one or two permission extra parameters. They tell whether

the assertion grants read permission, write permission, or
some other fractional permission. To be specific, we use 𝜋𝐺
to refer to a readable permission for edge_storage and the
vedge field of vertex struct, since Tarjan’s algorithm
does not modify the graph structure.We assignwritable per-
mission 𝜋𝑉 on field_storage so that vertex fields can change
as the program runs.

Any readable permission 𝜋 can be split into two readable
fractional permissions 𝜋/2, and anywritable permission can
be split into itself and ⊥, which indicates no permission.
Therefore we can prove the following lemma for the predi-
cate graph_rep.

Theorem 4.1 (Split graph_rep). if 𝜋𝐺 is readable permission
and 𝜋𝑉 is writable permission,

graph_rep𝜋𝐺 ,𝜋𝑉
(𝐺, 𝑠) ⊢

graph_rep𝜋𝐺 /2,𝜋𝑉 (𝐺, 𝑠) ∗ graph_rep𝜋𝐺 /2,⊥ (𝐺, 𝑠)

Now our graph can be split into two “copies”. The one
with 𝜋𝑉 will be used for updating the Vfield and the other
with ⊥ permission will be used for unfolding the adjacency
table.
Any updates in predicates with writable permission will

overwrite other predicateswithoutwritable permissionwhen
they are joined together.Therefore for graph_repwe can de-
rive the following rules.

Theorem 4.2 (Join graph_rep). if 𝜋𝐺 is readable permission
and 𝜋𝑉 is writable permission,

graph_rep𝜋𝐺 /2,𝜋𝑉 (𝐺, 𝑠2) ∗ graph_rep𝜋𝐺 /2,⊥ (𝐺, 𝑠1) ⊢
graph_rep𝜋𝐺 ,𝜋𝑉

(𝐺, 𝑠2)

Proving Functional Correctness of Tarjan’s Algorithm and its C Implementation in Coq and VST Technical Report, April 2021, SJTU, Shanghai

Theorem 4.2 implies that we do not have to maintain the
consistency of abstract states on our two copies of graph
at every program point. We can safely leave the unfolded
graph_rep𝜋𝐺 /2,⊥ not updated in the loop invariant, so that
we can save the reasoning on merging fragment predicates
into a whole graph predicate when verifying the loop body.
Then the updates on vertex fields can merely operate on the
graph_rep𝜋𝐺 /2,𝜋𝑉 predicate.Whenwe encounter a recursive
call tarjan_visit(y), we can simply apply the frame rule and
pass the graph_rep𝜋𝐺 /2,𝜋𝑉 part into the pre-condition of the
callee function’s specification, still leaving the graph_rep𝜋𝐺 /2,⊥
unfolded. The two graph_reps will be joined together at the
end of the program where the old 𝑠0 is wiped out.

Based on the theories above, we can eliminate redundant
proofs in the folding and unfolding derivation on graph pred-
icates. Our permission accounting based strategy can achieve
great simplicity and modularity in verification.

4.3 Function Specifications
The key components in verifying a recursive implementa-
tion of Tarjan’s algorithm are to provide the function spec-
ification and the loop invariant for the verification system.
Our solution is presented in figure 5. Throughout the pro-
gram, we will be using the small step description to describe
program states. We don’t have to write out the complex
algorithm-correctness level invariants on program states ex-
plicitly.

The pre-condition of the specification indicates that every
recursive call should start with a “Forward” step. Note that
the representation predicates here do not correspond to the
small step state exactly: theDfn andLow value of x have not
been modified in the memory but are already updated in the
small step description. But since the small step description
only serves as an auxiliary assertion, and the control flow of
our program will guarantee that these fields will always be
updated in the next few instructions(Line 16 - 18 in figure 1),
it is reasonable that the small step description outpaces the
actual memory state at certain program points, as long as
the representation predicates provide an accurate assertion
on program states.

The loop invariant is also described by the small step de-
scription. Since our small step relation does not enforce an
order in selecting out-edges, we refine the assertion with a
few extra propositions about the VisEdge field of 𝑠 . The out-
edges list in the adjacency table is split into two folds, visited
and unvisited. Every iteration will mark a new visited edge,
moving the head of the second half into tail of the first half.
The exit of the loop indicates the second half is empty, and
all the out-edges are visited. As has been explained in sec-
tion 4.2, the looping through out-edges on the graph is repre-
sented by the unfolded graph_rep𝜋𝐺 /2,⊥. graph_rep𝜋𝐺 /2,𝜋𝑉
is folded and consistent with the small step state in the loop
invariant.

The assertion derivation at entry of the loop is trivial.
The abstract small step state have become consistent with
the actual memory state at loop invariant. We can simply
take 𝑠 to be state 𝑠0 in the context. As for the loop body,
it has three branches. If the first branch is taken, branch
conditions gives Dfn(𝑦) = 0, we can construct a “Forward”
step to prove that the current state of the program satisfies
the pre-condition of tarjan_visit(y). According to the
recursive specification, the post condition of this function
call contains a multi-step relation and the assertion that all
out-edges of 𝑦 are visited. We can then construct a “Back-
ward” step, which derives the loop invariant. If the second
branch is taken, branch condition gives Dfn(𝑦) ≠ 0 ∧ 𝑦 ∈
Stack ∧ Low(𝑦) < Low(𝑥). We can construct a “Forward
Visited” step to derive the loop invariant. Similarly for the
last branch, we can also construct a step in order to derive
the loop invariant.

From the exit of the loop to the end of function, the exit
condition indicates that all out-edges have been visited. A
stk_pop_top_until(x) function is called on condition
thatLow(𝑥) = Dfn(𝑥), and then the function returns.There-
fore a “Backward” step can be constructed. Now we finish
the implementation verification that our C program is a sim-
ulation of the small step description.

4.4 Finishing the Proof
To summarize, we choose small step description to formu-
late and prove the algorithm correctness in an intuitive way.
As for the implementation proof, we demonstrate the flexi-
bility of using relation instead of function as the formal al-
gorithm description in constructing straightforward recur-
sive invariants. We also show that permission accounting,
which is originally designed for verifying concurrent pro-
grams, can help streamline the proof in verifying memory
manipulations for complex sequential programs like Tarjan’s
algorithm.
The only work left for us in proving functional correct-

ness of the C program is to show the user-expected specifi-
cation in figure 6 holds for function tarjan_visit(x).
Note that the user-expected specification is simply a spe-

cialization of the specification in figure 5. For the deriva-
tion of pre-condition, we can fill the multi-step relation as
a reflexive relation. By setting the VisEdge map to map all
edges as unvisited, the extra proposition on edge fields can
also be satisfied. As for the derivation of post-condition, we
can show that the witness of the multi-step relation 𝑠 ′ is an
end-state that can not be stepped to any other state. We can
apply theMaximal(Theorem 3.24) andConnected(Theorem
3.13) property to finish the proof.

We base our verification onVerifiable C, the program logic
of the Verified Software Toolchain (VST). The idea of “spe-
cialization” above is implemented in VST as the theory of
subsumption[1] 𝜙 <: 𝜓 which allows a function verified

Technical Report, April 2021, SJTU, Shanghai L. Zhou

GIVEN 𝑠0 = {FuncStack,Dfn,Low, Stack, SccList,VisEdge, Idx} ,

PRE ≜


graph_rep𝜋𝐺 ,𝜋𝑉

(𝐺, 𝑠0) ∗ global_rep(𝑠0)

∧𝐺 ⊢ start_state(𝑣0) ⇒∗
[
𝑥 :: FuncStack,Dfn[𝑥 ↦→ Idx + 1],Low[𝑥 ↦→ Idx + 1]
𝑥 :: Stack, Scc,VisEdge, Idx + 1, Stage1

]
∧∀𝑒, 𝑒.𝑠𝑟𝑐 = 𝑥 → VisEdge(𝑒) = unvisited

LOOP_INV ≜



EX (𝑠 : state) (𝑣𝑠 𝑒𝑠1 𝑒𝑠2 : list val),
graph_rep𝜋𝐺 /2,𝜋𝑉 (𝐺, 𝑠) ∗ global_rep(𝑠)∗
vertex_storage𝜋𝐺 /2,⊥ (𝐺, 𝑣𝑠, 𝑠0)∗
field_storage⊥ (𝑥, 𝑠0) ∗ edge_storage𝜋𝐺 /2 (𝐺, 𝑥, 𝑒𝑠1@𝑒𝑠2)
∧ vlis_prop(𝐺, 𝑥 :: 𝑣𝑠) ∧ elis_prop(𝐺, 𝑥, 𝑒𝑠1@𝑒𝑠2)
∧ 𝐺 ⊢ start_state(𝑣0) ⇒∗ 𝑠 ∧ 𝑠 .FuncStack = 𝑥 :: 𝑠0 .FuncStack
∧ ∀𝑒 ∈ 𝑒𝑠1, 𝑠 .VisEdge(𝑒) ≠ unvisited ∧ ∀𝑒 ∈ 𝑒𝑠2, 𝑠 .VisEdge(𝑒) = unvisited
∧ ∀𝑒, 𝑒.𝑠𝑟𝑐 ∈ 𝑠0.FuncStack → 𝑠 .VisEdge(𝑒) = 𝑠0.VisEdge(𝑒)

POST ≜


EX (𝑠 : state),
graph_rep𝜋𝐺 ,𝜋𝑉

(𝐺, 𝑠) ∗ global_rep(𝑠)
∧ 𝐺 ⊢ start_state(𝑣0) ⇒∗ 𝑠 ∧ 𝑠 .FuncStack = 𝑥 :: 𝑠0 .FuncStack ∧
∀𝑒, 𝑒.𝑠𝑟𝑐 = 𝑥 → 𝑠 .VisEdge(𝑒) ≠ unvisited ∧
∀𝑒, 𝑒.𝑠𝑟𝑐 ∈ 𝑠0.FuncStack → 𝑠 .VisEdge(𝑒) = 𝑠0 .VisEdge(𝑒)

Figure 5. Function specification and loop invariant for C Program


graph_rep𝜋𝐺 ,𝜋𝑉

(𝐺, start_state(𝑥)) ∗
global_rep(start_state(𝑥))


tarjan_visit(x)

EX(𝑠 : state), graph_rep𝜋𝐺 ,𝜋𝑉
(𝐺, 𝑠)

∗ global_rep(𝑠) ∧ 𝑠 .SccList is
Connected and Maximal


Figure 6. User expected function specification of tar‐
jan_visit(x)

with respect to 𝜙 to be used by clients expecting specifica-
tion𝜓 .
Above, we link the proofs in the two phases together eas-

ily and prove the functional correctness of a C implementa-
tion of Tarjan’s algorithm.

5 Conclusions
In this work, we first formalize Tarjan’s Algorithm in an in-
tuitive way, namely the small-step description. We present
a proof paradigm (n1-induction) for proving properties on
themulti-step relation.Through composition of lemmas, the
functional correctness in small-step description can be proved.
This part of proof is independent of the implementation,
which makes our small step description portable to various
implementations.

The small step description turns out to be a bridge that
links the model level proof of the graph algorithm and the
mechanized verification on a concrete imperative program

together. We introduced some techniques, such as share ac-
counting and specification subsumption that make proofs in
VST less tedious and more intuitive. Together, the combina-
tion of small step description and half-automated proofs in
VST ensures the functional correctness of the C program.

Last Updated on April 19, 2021.

References
[1] Lennart Beringer and Andrew W Appel. 2019. Abstraction and sub-

sumption in modular verification of C programs. In International Sym-
posium on Formal Methods. Springer, 573–590.

[2] Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew
Parkinson. 2005. Permission accounting in separation logic. In Pro-
ceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. 259–270.

[3] Robert Tarjan. 1972. Depth-first search and linear graph algorithms.
SIAM journal on computing 1, 2 (1972), 146–160.

[4] Shengyi Wang, Qinxiang Cao, Anshuman Mohan, and Aquinas Ho-
bor. 2019. Certifying graph-manipulating C programs via localizations
within data structures. Proc. ACM Program. Lang. 3, OOPSLA (2019),
171:1–171:30. https://doi.org/10.1145/3360597

https://doi.org/10.1145/3360597

	Abstract
	1 Background
	1.1 Strongly Connected Components
	1.2 Tarjan's Algorithm, a Step's View

	2 An Overview of the Proof
	3 Proving Correctness of Small Step Description
	3.1 States of the Algorithm
	3.2 Transition Rules
	3.3 Invariants over Transitions
	3.4 Property of DFS Tree
	3.5 Putting it All Together

	4 Proving the Simulation Relation on C Program
	4.1 Representation predicates for graphs, a simple version
	4.2 Representation predicates with fractional permission
	4.3 Function Specifications
	4.4 Finishing the Proof

	5 Conclusions
	References

