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We propose a new formulation for typing iso-recursive types, by extending the fold and unfold operators in

standard iso-recursive type systems to a casting operator that can transform terms between deep isomorphic

types. We show that by integrating this design into the CP programming language, we can achieve a solution

to the Expression Problem, with support for recursive methods.

CCS Concepts: • Theory of computation → Type theory; • Software and its engineering → Object
oriented languages.
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1 EXPRESSION PROBLEM IN CP
We consider implementing an arithmetic expression datatype in Fig. 1. Our code is written in the CP

programming language [18], that features compositional interfaces and nested trait composition,

and provides a solution to the Expression Problem (EP) [16].

In CP, datatype constructors are modeled as functions that take datatype arguments as input and

return all the methods on the datatype, as shown in Fig. 1b. One can naturally add new methods or

new constructors by extending the compositional interface and providing a trait that implements

the extension. For example, in Fig. 1c, evalImpl is defined for the method eval and constructors

Lit and Add. The trait evalImpl can be combined with other components modularly and address

EP, as we shall see.

type Exp = {
eval : Int,
double : Exp,

};

(a) The interface we want to build

type NumSig = {
Lit : Int → Exp;
Add : Exp → Exp → Exp;

};

(b) The definition of datatype Num

type IEval = { eval : Int };
evalImpl = {

Lit (val : Int) = { eval = val };
Add (left right : IEval) =
{ eval = left.eval + right.eval }

};
-- evalImpl : {
-- Lit : Int → IEval
-- Add : IEval → IEval → IEval
-- }

(c) The implementation of the eval method and its type

Fig. 1. Motivating programming examples

CP has a structural type system that models objects as records, object types as record types. How-

ever, such formulation prevents us from expressing recursive methods. For example, in the interface

of Exp in Fig. 1a, there is a doublemethod that returns another arithmetic expression datatype with

all the values in Lit nodes doubled. Such interface cannot be written in CP at present. One may nat-

urally consider encoding the interface Exp as a recursive type: Exp ≜ 𝜇 𝛼.{eval:Int, double:𝛼},
and implement the method double as follows:

type IDouble = { double : Exp };
doubleImpl = fix self. {
Lit (value : Int) = { double = self.Lit (value + value) };
Add (left : Exp) (right : Exp) = { double = self.Add left.double right.double }

}; -- doubleImpl: {Lit: Int → IDouble, Add: Exp → Exp → IDouble}
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However, if we naïvely extend CP with iso-recursive types, the composition below is not feasible!

implNum : NumSig = evalImpl ,, doubleImpl -- Type error!

The nested trait composition in CP is enabled by the merge operator (,,), which creates an

intersection type of the two components evalImpl and doubleImpl. CP supports the BCD-style

distributive subtyping on arrow types [1], and models record concatenation by intersections of

single field record types, so if we look into the type checking process of implNum, we are left to
transform {eval: Int, double: Exp} to Exp.
In this work we take an iso-recursive treatment of the recursive types, since it has an easier

metatheory [22] and has demonstrated to be conservative to other programming features [20].

Iso-recursive types and their unfoldings should be explicitly converted via term-level fold and
unfold constructs. For example, given an expression e of type {eval: Int, double: Exp}, (fold
[Exp] e) gives the type Exp.
Nevertheless, in the example of implNum above, there are no ways to insert the fold operator,

since we are implementing the components of this folded expression separately. The current

iso-recursive type system [21] is not effective enough to modularly compose the recursive methods.

2 FULL ISO-RECURSIVE TYPES
The main idea of our solution is straightforward. Instead of allowing foldings/unfoldings on

expressions of recursive types, we allow them to take place anywhere within an expression.

Specifically, we introduce a new casting operator that represents the isomorphic folding/unfolding

transformations between types, as described by the type casting rules in Fig. 2.

𝑒 ::= . . . | cast[𝑐]𝑒 (Expressions)
𝑐 ::= unfold𝐴 | fold𝐴 | id

| 𝑐1 → 𝑐2 | . . . (Casting operators)

⊢ 𝑒 : 𝐴 (Full iso-recursive typing)
Typ-cast

⊢ 𝑒 : 𝐴 ⊢ 𝐴 ↩→ 𝐵 : 𝑐

⊢ cast [𝑐]𝑒 : 𝐵

⊢ 𝐴 ↩→ 𝐵 : 𝑐 (Type casting)
TCast-arrow

⊢ 𝐴2 ↩→ 𝐴1 : 𝑐1 ⊢ 𝐵1 ↩→ 𝐵2 : 𝑐2

⊢ 𝐴1 → 𝐵1 ↩→ 𝐴2 → 𝐵2 : 𝑐1 → 𝑐2

TCast-unfold

⊢ 𝜇𝛼.𝐴 ↩→ 𝐴[𝜇𝛼.𝐴/𝛼] : unfold𝜇𝛼.𝐴

TCast-fold

⊢ 𝐴[𝜇𝛼.𝐴/𝛼] ↩→ 𝜇𝛼.𝐴 : fold𝜇𝛼.𝐴

TCast-id

⊢ 𝐴 ↩→ 𝐴 : id

Fig. 2. Selected typing and casting rules of full iso-recursive types

Compared to the standard iso-recursive typing rules, our type system is now able to express

more terms. For example, with the casting operator

cNum ≜ {Lit : id → foldExp},,{Add : id → id → foldExp}
we can achieve the desired typing cast [cNum] implNum : NumSig.

We have developed a type system for a calculus with record types, disjoint intersection types [8],

BCD subtyping, iso-recursive types, and the casting operators. The calculus employs a call-by-value

type-directed operational semantics [13, 14] and can encode all of the programming examples

above. We formally prove the type safety of the type system in Coq.
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3 NEXT STEP: MODULAR COMPOSITION VIA POLYMORPHISM
In our above implementation of doubleImpl, the input argument of the Add constructor is a fixed
object interface Exp, which indicates that users need to decide what exact methods will be included

in the interface in advance, and doubleImpl cannot be further composed with other constructors or

methods. Therefore, we have not reached a complete solution to the EP. To fully support modular

composition, we need polymorphism. Specifically, we modify the code as follows:

type NumSig[X] = { Lit: Int → X; Add: X → X → X };
type IDouble[X] = { double : X };
evalImpl (self: Top) = { ... }; -- evalImpl : Top → NumSig IEval
doubleImpl X (self: NumSig X) = {
Lit (value : Int) = { double = self.Lit (value + value) };
Add (left : IDouble X) (right : IDouble X) =

{ double = self.Add left.double right.double }
}; -- doubleImpl: forall X. NumSig X → NumSig (IDouble X)

Now the interfaces and implementations are parameterized by a type variable X. We can also add a

new datatype constructor Neg:

type NegSig[X] = { Neg : X → X };
negImpl X (self: NegSig X) = { Neg (node : IEval & IDouble X ) = {

eval = - node.eval; double = self.Neg node.double
}}; -- negImpl: forall X. NegSig X → NegSig (IEval & IDouble X)

Finally, we can combine all the extensions by instantiating X to be the final recursive type of the

object interface Exp, and insert a top-level casting operator to fold the recursive type at the correct

places. Note that to support self reference in the implementations, we also need to close the

expression by a general term-level fixpoint.

type Lang = { Lit: Int → Exp; Add: Exp → Exp → Exp; Neg: Exp → Exp };
langImpl : Lang = fix. (cast [id → (cNum ,, {Neg: id → foldExp})]

(evalImpl ,, doubleImpl Exp ,, negImpl Exp))

With polymorphism, our type casting relation can achieve the full power of modular composition

of recursive methods. We expect polymorphism in our calculus to be feasible, based on prior works

in disjoint polymorphism [2, 10]. The example demonstrates that we can address the Expression

Problem in that both new constructors and new methods can be easily extended in our encoding.

4 RELATEDWORK
There have been many solutions to EP in the literature and existing programming languages,

including Object Algebras [7], ML module systems [15], family polymorphism [9, 19], polymorphic

variants [12], the finally tagless encodings [5, 6], super-Charging OOP [11] and other techniques.

Among those approaches, CP provides a natural solution which avoids the need of writing boiler-

plate or highly parameterized codes. This work addresses one of the most pressing extensions in

CP. With full iso-recursive types, we have modeled the double operation described by [17] in this

abstract. Moreover, the binary methods [3] can also be modeled.
1
It is worth noticing that recursive

types are not the only approach to encoding object methods [4], but we believe that compared to

others, full iso-recursive types are more natural to be embedded into the CP ecosystem.
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The example in this abstract can be found at the online CP implementation https://plground.org/tony/binary.
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